Abstract
Most topology optimization problems are formulated as constrained optimization problems; thus, mathematical programming has been the mainstream. On the other hand, solving topology optimization problems using time evolution equations, seen in the level set-based and the phase field-based methods, is yet another approach. One issue is the treatment of multiple constraints, which is difficult to incorporate within time evolution equations. Another issue is the extra re-initialization steps that interrupt the time integration from time to time. This paper proposes a way to describe, using a Heaviside projection-based representation, a time-dependent diffusion equation that addresses these two issues. The constraints are treated using a modified augmented Lagrangian approach in which the Lagrange multipliers are updated by simple ordinary differential equations. The proposed method is easy to implement using a high-level finite element code. Also, it is very practical in the sense that one can fully utilize the existing framework of the code: GUI, parallelized solvers, animations, data imports/exports, and so on. The effectiveness of the proposed method is demonstrated through numerical examples in both the planar and spatial cases.
Original language | English |
---|---|
Pages (from-to) | 795-817 |
Number of pages | 23 |
Journal | International Journal for Numerical Methods in Engineering |
Volume | 93 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2013 Feb 24 |
Externally published | Yes |
Keywords
- Heaviside projection method
- Time-dependent diffusion equation
- Topology optimization
ASJC Scopus subject areas
- Numerical Analysis
- Engineering(all)
- Applied Mathematics