Abstract
To test the hypotheses that plasma volume (PV) expansion 24 h after intense exercise is associated with reduced transcapillary escape rate of albumin (TER(alb)) and that local changes in transcapillary forces in the previously active tissues favor retention of protein in the vascular space, we measured PV, TER(alb), plasma colloid osmotic pressure (COP(p)), interstitial fluid hydrostatic pressure (Pi), and colloid osmotic pressure in leg muscle and skin and capillary filtration coefficient (CFC) in the arm and leg in seven men and women before and 24 h after intense upright cycle ergometer exercise. Exercise expanded PV by 6.4% at 24 h (43.9 ± 0.8 to 46.8 ± 1.2 ml/kg, P < 0.05) and decreased total protein concentration (6.5 ± 0.1 to 6.3 ± 0.1 g/dl, P < 0.05) and COP(p) (26.1 ± 0.8 to 24.3 ± 0.9 mmHg, P < 0.05), although plasma albumin concentration was unchanged. TER(alb) tended to decline (8.4 ± 0.5 to 6.5 ± 0.7%/h, P = 0.11) and was correlated with the increase in PV (r = -0.69, P < 0.05). CFC increased in the leg (3.2 ± 0.2 to 4.3 ± 0.5 μl · 100 g-1 · min-1 mmHg-1, P < 0.05), and Pi showed a trend to increase in the leg muscle (2.8 ± 0.7 to 3.8 ± 0.3 mmHg, P = 0.08). These data demonstrate that TER(alb) is associated with PV regulation and that local transcapillary forces in the leg muscle may favor retention of albumin in the vascular space after exercise.
Original language | English |
---|---|
Pages (from-to) | 407-413 |
Number of pages | 7 |
Journal | Journal of Applied Physiology |
Volume | 83 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1997 Aug |
Externally published | Yes |
Keywords
- Capillary filtration coefficient
- Evans blue dye
- Interstitial fluid colloid osmotic pressure
- Interstitial fluid hydrostatic pressure
- Plasma volume
ASJC Scopus subject areas
- Physiology
- Physiology (medical)