TY - GEN
T1 - Transient boiling and cross flow in 5×5 ROD bundle with rapid heating
AU - Takiguchi, Hiroki
AU - Furuya, Masahiro
AU - Arai, Takahiro
AU - Shirakawa, Kenetsu
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Rapid thermal elevation in nuclear reactor is an important factor for nuclear safety. It is indispensable to develop a three-dimensional nuclear thermal transient analysis code and confirm its validity in order to accurately evaluate the effectiveness of the running nuclear safety measures when heating power of reactor core rapidly rises. However, the heat transfer characteristics such as reactivity feedback characteristics due to moderator density and the technical knowledge explaining the uncertainty are insufficient. In particular, the cross propagation behavior of vapor bubble (void) in cross section of fuel assembly is not grasped. This study evaluates the cross propagation void behavior in a simulated fuel assembly at time of rapid heat generation with a thermal hydraulic test loop including a 5×5 rod bundle having the heat generation profile in the flow cross sectional direction. In this paper, the branching heat output condition of transient cross propagation was investigated from visualization of high speed video camera and void fraction measurement by wire mesh sensor with the inlet flow rate 0.3m/s and the inlet coolant temperature 40oC, which are based on the transient safety analysis condition. In addition, we applied the particle imaging velocimetry (PIV) technique to measure liquid-phase velocity profile of the coolant in the transient cross flow and experimentally clarified the relationship with the cross flow.
AB - Rapid thermal elevation in nuclear reactor is an important factor for nuclear safety. It is indispensable to develop a three-dimensional nuclear thermal transient analysis code and confirm its validity in order to accurately evaluate the effectiveness of the running nuclear safety measures when heating power of reactor core rapidly rises. However, the heat transfer characteristics such as reactivity feedback characteristics due to moderator density and the technical knowledge explaining the uncertainty are insufficient. In particular, the cross propagation behavior of vapor bubble (void) in cross section of fuel assembly is not grasped. This study evaluates the cross propagation void behavior in a simulated fuel assembly at time of rapid heat generation with a thermal hydraulic test loop including a 5×5 rod bundle having the heat generation profile in the flow cross sectional direction. In this paper, the branching heat output condition of transient cross propagation was investigated from visualization of high speed video camera and void fraction measurement by wire mesh sensor with the inlet flow rate 0.3m/s and the inlet coolant temperature 40oC, which are based on the transient safety analysis condition. In addition, we applied the particle imaging velocimetry (PIV) technique to measure liquid-phase velocity profile of the coolant in the transient cross flow and experimentally clarified the relationship with the cross flow.
UR - http://www.scopus.com/inward/record.url?scp=85056203717&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056203717&partnerID=8YFLogxK
U2 - 10.1115/ICONE26-81496
DO - 10.1115/ICONE26-81496
M3 - Conference contribution
AN - SCOPUS:85056203717
T3 - International Conference on Nuclear Engineering, Proceedings, ICONE
BT - Thermal-Hydraulics and Safety Analyses
PB - American Society of Mechanical Engineers (ASME)
T2 - 2018 26th International Conference on Nuclear Engineering, ICONE 2018
Y2 - 22 July 2018 through 26 July 2018
ER -