TY - JOUR
T1 - Transparent ion-exchange membrane exhibiting intense emission under a specific ph condition based on polypyridyl ruthenium(Ii) complex with two imidazophenanthroline groups
AU - Kamebuchi, Hajime
AU - Tamaki, Satoshi
AU - Okazawa, Atsushi
AU - Kojima, Norimichi
N1 - Funding Information:
Funding: This work was supported by JSPS KAKENHI Grant Number JP20K15302 (H.K.). H.K. is also very grateful for funding by the Sasakawa Scientific Research Grant from The Japan Science Society (28-341), Tokyo Institute of Technology Foundation Research and Educational Grants (28-036), a research grant from The Mazda Foundation (16KK-354), a research grant from Izumi Science and Technology Foundation (H29-J-109), and a research grant from Iketani Science and Technology Foundation (0301067-A).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6
Y1 - 2021/6
N2 - The development and the photophysical behavior of a transparent ion-exchange membrane based on a pH-sensitive polypyridyl ruthenium(II) complex, [(bpy)2RuII(H2bpib)RuII(bpy)2](ClO4)4 (bpy = 2,2′-bipyridine, H2bpib = 1,4-bis([1,10]phenanthroline[5,6-d]-imidazol-2-yl)benzene), are experimentally and theoretically reported. The emission spectra of [(bpy)2RuII(H2bpib)RuII(bpy)2]@Nafion film were observed between pH 2 and pH 11 and showed the highest relative emission intensity at pH 5 (λmaxem = 594.4 nm). The relative emission intensity of the film significantly decreased down to 75% at pH 2 and 11 compared to that of pH 5. The quantum yields (Φ) and lifetimes (τ) showed similar correlations with respect to pH, Φ = 0.13 and τ = 1237 ns at pH 5, and Φ = 0.087 and τ = 1014 ns and Φ = 0.069 and τ = 954 ns at pH 2 and pH 11, respectively. These photophysical data are overall considerably superior to those of the solution, with the radiative-(kr) and non-radiative rate constants (knr) at pH 5 estimated to be kr = 1.06 × 105 s−1 and knr = 7.03 × 105 s−1. Density functional theory calculations suggested the contribution of ligand-to-ligand-and intraligand charge transfer to the imidazolium moiety in Ru-H3bpib species, implying that the positive charge on the H3bpib ligand works as a quencher. The Ru-Hbpib species seems to enhance non-radiative deactivation by reducing the energy of the upper-lying metal-centered excited state. These would be responsible for the pH-dependent “off-on-off” emission behavior.
AB - The development and the photophysical behavior of a transparent ion-exchange membrane based on a pH-sensitive polypyridyl ruthenium(II) complex, [(bpy)2RuII(H2bpib)RuII(bpy)2](ClO4)4 (bpy = 2,2′-bipyridine, H2bpib = 1,4-bis([1,10]phenanthroline[5,6-d]-imidazol-2-yl)benzene), are experimentally and theoretically reported. The emission spectra of [(bpy)2RuII(H2bpib)RuII(bpy)2]@Nafion film were observed between pH 2 and pH 11 and showed the highest relative emission intensity at pH 5 (λmaxem = 594.4 nm). The relative emission intensity of the film significantly decreased down to 75% at pH 2 and 11 compared to that of pH 5. The quantum yields (Φ) and lifetimes (τ) showed similar correlations with respect to pH, Φ = 0.13 and τ = 1237 ns at pH 5, and Φ = 0.087 and τ = 1014 ns and Φ = 0.069 and τ = 954 ns at pH 2 and pH 11, respectively. These photophysical data are overall considerably superior to those of the solution, with the radiative-(kr) and non-radiative rate constants (knr) at pH 5 estimated to be kr = 1.06 × 105 s−1 and knr = 7.03 × 105 s−1. Density functional theory calculations suggested the contribution of ligand-to-ligand-and intraligand charge transfer to the imidazolium moiety in Ru-H3bpib species, implying that the positive charge on the H3bpib ligand works as a quencher. The Ru-Hbpib species seems to enhance non-radiative deactivation by reducing the energy of the upper-lying metal-centered excited state. These would be responsible for the pH-dependent “off-on-off” emission behavior.
KW - Nafion membrane
KW - Polypyridyl ruthenium(II) complex
KW - Transparent emitter
UR - http://www.scopus.com/inward/record.url?scp=85107802914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107802914&partnerID=8YFLogxK
U2 - 10.3390/membranes11060400
DO - 10.3390/membranes11060400
M3 - Article
AN - SCOPUS:85107802914
SN - 2077-0375
VL - 11
JO - Membranes
JF - Membranes
IS - 6
M1 - 400
ER -