Triggering of high-speed neurite outgrowth using an optical microheater

Kotaro Oyama*, Vadim Zeeb, Yuki Kawamura, Tomomi Arai, Mizuho Gotoh, Hideki Itoh, Takeshi Itabashi, Madoka Suzuki, Shin'Ichi Ishiwata

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 1/4m within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.

Original languageEnglish
Article number16611
JournalScientific Reports
Publication statusPublished - 2015 Nov 16

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Triggering of high-speed neurite outgrowth using an optical microheater'. Together they form a unique fingerprint.

Cite this