Tungstate-based inorganic-organic hybrid nanobelts/nanotubes with lamellar mesostructures: Synthesis, characterization, and formation mechanism

Deliang Chen, Yoshiyuki Sugahara*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

The formation process of novel tungstate-based inorganic-organic hybrid nanobelts/nanotubes with lamellar mesostructures has been investigated, with an emphasis on monitoring the morphological and microstructural changes of the products during the reactions of H2W2O7· xH2O (x = 3.49) with n-alkylamines (CmH 2m+1NH2, 4 ≤ m ≤ 14) in a system of heptane/n-alkylamine/H2W2O7·xH 2O (n-alkylamine:H2W2O7· xH2O molar ratio of about 30) under ambient conditions. The results indicate that normal intercalation occurrs in the early stage to form intercalation compounds with double-octahedral W-O layers, which are then dissolved in the highly alkaline aqueous solutions confined in the reversemicelle-like media, where the dissolved species recrystallize to form hybrid nanobelts/nanotubes with single-octahedral W-O layers. Both the intercalation compounds obtained after a short reaction time (e.g., 30 min) and the hybrid nanobelts/nanotubers formed after a long reaction time (e.g., 5 days) possess a bilayered arrangement of n-alkyl chains, but their tilt angle in the intercalation compounds (42°) is much smaller than that in the hybrid nanobelts/nanotubes (71°). The interlayer water released from H 2W2O7·xH2O upon intercalation of n-alkylamine reacts with excess n-alkylamine molecules to form highly alkaline aqueous solutions, which have vital effects on the subsequent dissolution of the double-octahedral W-O layers to be single-octahedral layers. In addition, the high molar n-alkylamine:H2W2O 7·xH2O ratios (e.g., 30) are necessary to form tungstate-based inorganic-organic nanobelts/nanotubes, and the nonpolar solvents not only facilitate the reactions between n-alkylamines and H2W 2O7·xH2O but also favor the formation of belt/tubelike morphology.

Original languageEnglish
Pages (from-to)1808-1815
Number of pages8
JournalChemistry of Materials
Volume19
Issue number7
DOIs
Publication statusPublished - 2007 Apr 3

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Tungstate-based inorganic-organic hybrid nanobelts/nanotubes with lamellar mesostructures: Synthesis, characterization, and formation mechanism'. Together they form a unique fingerprint.

Cite this