Une estimation de Strichartz avec poids pour l'équation des ondes

Translated title of the contribution: Weighted Strichartz estimate for the wave equation *

Piero D'Ancona*, Vladimir Georgiev, Hideo Kubo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

In this work we study weighted Sobolev spaces in ℝn generated by the Lie algebra of vector fields (1 + \x\2)1/2∂xj, j = 1,...,n. Interpolation properties and Sobolev embeddings are obtained on the basis of a suitable localization in ℝn. As an application we derive weighted Lq estimates for the solution of the homogeneous wave equation. For the inhomogeneous wave equation we generalize the weighted Strichartz estimate established in [6] and establish global existence result for the supercritical semilinear wave equation with non-compact small initial data in these weighted Sobolev spaces.

Translated title of the contributionWeighted Strichartz estimate for the wave equation *
Original languageFrench
Pages (from-to)349-354
Number of pages6
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume330
Issue number5
DOIs
Publication statusPublished - 2000 Mar 1
Externally publishedYes

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'Weighted Strichartz estimate for the wave equation *'. Together they form a unique fingerprint.

Cite this