TY - JOUR
T1 - Uniqueness of radially symmetric positive solutions for - Δ u + u = up in an annulus
AU - Felmer, Patricio
AU - Martínez, Salomé
AU - Tanaka, Kazunaga
N1 - Funding Information:
The authors were partially supported by Fondecyt #1030929 and FONDAP de Matemáticas Aplicadas (P.F.), Fondecyt #1050754, FONDAP de Matemáticas Aplicadas and Nucleus Millenium P04-069-F Information and Randomness (S.M.), Grant-in-Aid for Scientific Research (B) (No. 20340037) JSPS and Fondecyt #7060276 (K.T.)
PY - 2008/9/1
Y1 - 2008/9/1
N2 - In this article we prove that the semi-linear elliptic partial differential equation- Δ u + u = up in Ω,u > 0 in Ω, u = 0 on ∂ Ω possesses a unique positive radially symmetric solution. Here p > 1 and Ω is the annulus {x ∈ RN | a < | x | < b}, with N ≥ 2, 0 < a < b ≤ ∞. We also show the positive solution is non-degenerate.
AB - In this article we prove that the semi-linear elliptic partial differential equation- Δ u + u = up in Ω,u > 0 in Ω, u = 0 on ∂ Ω possesses a unique positive radially symmetric solution. Here p > 1 and Ω is the annulus {x ∈ RN | a < | x | < b}, with N ≥ 2, 0 < a < b ≤ ∞. We also show the positive solution is non-degenerate.
KW - Non-degeneracy
KW - Non-linear elliptic equation
KW - Radially symmetric solutions
UR - http://www.scopus.com/inward/record.url?scp=46449111994&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46449111994&partnerID=8YFLogxK
U2 - 10.1016/j.jde.2008.06.006
DO - 10.1016/j.jde.2008.06.006
M3 - Article
AN - SCOPUS:46449111994
SN - 0022-0396
VL - 245
SP - 1198
EP - 1209
JO - Journal of Differential Equations
JF - Journal of Differential Equations
IS - 5
ER -