Abstract
The dispersion relation of a doped hole in the half-filled 2D Hubbard model is shown to follow a |k|4 law around the (0, ± π) and (±π, 0) points in the Brillouin zone. Upon addition of pair-hopping processes this dispersion relation is unstable towards a |k|2 law. The above follows from T = 0 Quantum Monte-Carlo calculations of the single particle spectral function A(k., ω) on 16 × 16 lattices. We discuss finite dopings and argue that the added term restores coherence to charge dynamics and drives the system towards a dx2-y2 superconductor.
Original language | English |
---|---|
Pages (from-to) | 595-598 |
Number of pages | 4 |
Journal | European Physical Journal B |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1999 Aug 2 |
Externally published | Yes |
Keywords
- 71.10.Fd lattice fermion models (Hubbard model, etc.)
- 71.30.+h Metal-insulator transitions and other electronic transitions
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics