Abstract
Classical EDAs generally use truncation selection to estimate the distribution of the feasible (good) individuals while ignoring the infeasible (bad) ones. However, various research in EAs reported that the infeasible individuals may affect and help the problem solving. This paper proposed a new method to use the infeasible individuals by studying the sub-structures rather than the entire individual structures to solve Reinforcement Learning (RL) problems, which generally factorize their entire solutions to the sequences of state-action pairs. This work was studied in a recent graph-based EDA named Probabilistic Model Building Genetic Network Programming (PMBGNP) which can solve RL problems successfully. The effectiveness of this work is verified in a RL problem, i.e., robot control, comparing with some other related work.
Original language | English |
---|---|
Title of host publication | Genetic and Evolutionary Computation Conference, GECCO'11 |
Pages | 601-608 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 2011 |
Event | 13th Annual Genetic and Evolutionary Computation Conference, GECCO'11 - Dublin Duration: 2011 Jul 12 → 2011 Jul 16 |
Other
Other | 13th Annual Genetic and Evolutionary Computation Conference, GECCO'11 |
---|---|
City | Dublin |
Period | 11/7/12 → 11/7/16 |
Keywords
- EDA
- Infeasible individuals
- Probabilistic Model Building Genetic Network Programming
- Reinforcement learning
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Theoretical Computer Science