TY - JOUR
T1 - Vertebrate Spt2 is a novel nucleolar histone chaperone that assists in ribosomal DNA transcription
AU - Osakabe, Akihisa
AU - Tachiwana, Hiroaki
AU - Takaku, Motoki
AU - Hori, Tetsuya
AU - Obuse, Chikashi
AU - Kimura, Hiroshi
AU - Fukagawa, Tatsuo
AU - Kurumizaka, Hitoshi
PY - 2013/3/15
Y1 - 2013/3/15
N2 - In eukaryotes, transcription occurs in the chromatin context with the assistance of histone-binding proteins, such as chromatin/nucleosome remodeling factors and histone chaperones. However, it is unclear how each remodeling factor or histone chaperone functions in transcription. Here, we identify a novel histone-binding protein, Spt2, in higher eukaryotes. Recombinant human Spt2 binds to histones and DNA, and promotes nucleosome assembly in vitro. Spt2 accumulates in nucleoli and interacts with RNA polymerase I in chicken DT40 cells, suggesting its involvement in ribosomal RNA transcription. Consistently, Spt2-deficient chicken DT40 cells are sensitive to RNA polymerase I inhibitors and exhibit decreased transcription activity, as shown by a transcription run-on assay. Domain analyses of Spt2 revealed that the C-terminal region, containing the region homologous to yeast Spt2, is responsible for histone binding, while the central region is essential for nucleolar localization and DNA binding. Based on these results, we conclude that vertebrate Spt2 is a novel histone chaperone with a separate DNA-binding domain that facilitates ribosomal DNA transcription through chromatin remodeling during transcription.
AB - In eukaryotes, transcription occurs in the chromatin context with the assistance of histone-binding proteins, such as chromatin/nucleosome remodeling factors and histone chaperones. However, it is unclear how each remodeling factor or histone chaperone functions in transcription. Here, we identify a novel histone-binding protein, Spt2, in higher eukaryotes. Recombinant human Spt2 binds to histones and DNA, and promotes nucleosome assembly in vitro. Spt2 accumulates in nucleoli and interacts with RNA polymerase I in chicken DT40 cells, suggesting its involvement in ribosomal RNA transcription. Consistently, Spt2-deficient chicken DT40 cells are sensitive to RNA polymerase I inhibitors and exhibit decreased transcription activity, as shown by a transcription run-on assay. Domain analyses of Spt2 revealed that the C-terminal region, containing the region homologous to yeast Spt2, is responsible for histone binding, while the central region is essential for nucleolar localization and DNA binding. Based on these results, we conclude that vertebrate Spt2 is a novel histone chaperone with a separate DNA-binding domain that facilitates ribosomal DNA transcription through chromatin remodeling during transcription.
KW - Chromatin
KW - Histone chaperone
KW - Nucleoli
KW - Nucleosome
KW - RNA polymerase
KW - Transcription
UR - http://www.scopus.com/inward/record.url?scp=84877917618&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877917618&partnerID=8YFLogxK
U2 - 10.1242/jcs.112623
DO - 10.1242/jcs.112623
M3 - Article
C2 - 23378026
AN - SCOPUS:84877917618
SN - 0021-9533
VL - 126
SP - 1323
EP - 1332
JO - Journal of Cell Science
JF - Journal of Cell Science
IS - 6
ER -