Viscoelasticity and shear wave velocity of liver tissue evaluated by dynamic mechanical analysis

K. Murakami, M. Tsukune, Y. Kobayashi, M. Fujie, R. Kishimoto, T. Obata, K. Kawamura, K. Yoshida, T. Yamaguchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The frequency dependence of shear wave velocity provides significant information for evaluating viscoelastic character of tissue relating to liver fibrosis. Although Voigt model has been often used in viscoelastic analysis, several studies showed that the frequency dependence measured by dynamic mechanical analysis (DMA) test was not consistent with the theoretical prediction. To experimentally investigate the relationships of the change of the tissue structure and the viscoelasticity of tissue, the shear wave velocity of fatty and fibrotic livers of rat model was quantitatively measured by using shear wave elastography (SWE) and DMA test. In DMA test, shear wave velocity was calculated from the complex elasticity modulus; storage and loss elastic modulus. The difference in shear wave velocity between fatty and fibrotic livers was evaluated to be 0.27 m/s in SWE and 0.20 m/s in DMA test.

Original languageEnglish
Title of host publication2015 IEEE International Ultrasonics Symposium, IUS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781479981823
DOIs
Publication statusPublished - 2015 Nov 13
EventIEEE International Ultrasonics Symposium, IUS 2015 - Taipei, Taiwan, Province of China
Duration: 2015 Oct 212015 Oct 24

Other

OtherIEEE International Ultrasonics Symposium, IUS 2015
Country/TerritoryTaiwan, Province of China
CityTaipei
Period15/10/2115/10/24

Keywords

  • elastography
  • freaquency dependence
  • rheometer
  • Shear wave
  • viscoelasticity properties

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Viscoelasticity and shear wave velocity of liver tissue evaluated by dynamic mechanical analysis'. Together they form a unique fingerprint.

Cite this