Wasserstein k-means with sparse simplex projection

Takumi Fukunaga, Hiroyuki Kasai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

This paper presents a proposal of a faster Wasserstein k-means algorithm for histogram data by reducing Wasserstein distance computations and exploiting sparse simplex projection. We shrink data samples, centroids, and the ground cost matrix, which leads to considerable reduction of the computations used to solve optimal transport problems without loss of clustering quality. Furthermore, we dynamically reduced the computational complexity by removing lower-valued data samples and harnessing sparse simplex projection while keeping the degradation of clustering quality lower. We designate this proposed algorithm as sparse simplex projection based Wasserstein k-means, or SSPW k-means. Numerical evaluations conducted with comparison to results obtained using Wasserstein k-means algorithm demonstrate the effectiveness of the proposed SSPW k-means for real-world datasets.

Original languageEnglish
Title of host publicationProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1627-1634
Number of pages8
ISBN (Electronic)9781728188089
DOIs
Publication statusPublished - 2020
Event25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
Duration: 2021 Jan 102021 Jan 15

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
Country/TerritoryItaly
CityVirtual, Milan
Period21/1/1021/1/15

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Wasserstein k-means with sparse simplex projection'. Together they form a unique fingerprint.

Cite this