TY - JOUR
T1 - Weighted Strichartz estimates and global existence for semilinear wave equations
AU - Georgiev, Vladimir
AU - Lindblad, Hans
AU - Sogge, Christopher D.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1997/12
Y1 - 1997/12
N2 - In this paper we prove a sharp global existence theorem in all dimensions for nonlinear wave equations with power-type nonlinearities. The proof is based on a weighted Strichartz estimate involving powers of the Lorentz distance.
AB - In this paper we prove a sharp global existence theorem in all dimensions for nonlinear wave equations with power-type nonlinearities. The proof is based on a weighted Strichartz estimate involving powers of the Lorentz distance.
UR - http://www.scopus.com/inward/record.url?scp=0001726448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001726448&partnerID=8YFLogxK
U2 - 10.1353/ajm.1997.0038
DO - 10.1353/ajm.1997.0038
M3 - Article
AN - SCOPUS:0001726448
SN - 0002-9327
VL - 119
SP - 1291
EP - 1319
JO - American Journal of Mathematics
JF - American Journal of Mathematics
IS - 6
ER -