TY - JOUR
T1 - When are the Rees algebras of parameter ideals almost Gorenstein graded rings?
AU - Goto, Shiro
AU - Rahimi, Mehran
AU - Taniguchi, Naoki
AU - Le Truong, Hoang
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.
AB - Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.
UR - http://www.scopus.com/inward/record.url?scp=85025807643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025807643&partnerID=8YFLogxK
U2 - 10.1215/21562261-2017-0010
DO - 10.1215/21562261-2017-0010
M3 - Article
AN - SCOPUS:85025807643
SN - 2156-2261
VL - 57
SP - 655
EP - 666
JO - Kyoto Journal of Mathematics
JF - Kyoto Journal of Mathematics
IS - 3
ER -