When are the Rees algebras of parameter ideals almost Gorenstein graded rings?

Shiro Goto, Mehran Rahimi, Naoki Taniguchi, Hoang Le Truong

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.

Original languageEnglish
Pages (from-to)655-666
Number of pages12
JournalKyoto Journal of Mathematics
Volume57
Issue number3
DOIs
Publication statusPublished - 2017 Sept 1
Externally publishedYes

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'When are the Rees algebras of parameter ideals almost Gorenstein graded rings?'. Together they form a unique fingerprint.

Cite this