Xeroderma pigmentosum group a suppresses mutagenesis caused by clustered oxidative DNA adducts in the human genome

Akira Sassa, Nagisa Kamoshita, Yuki Kanemaru, Masamitsu Honma, Manabu Yasui

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated fromTSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were sitespecifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion ofmutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

Original languageEnglish
Article numbere0142218
JournalPloS one
Volume10
Issue number11
DOIs
Publication statusPublished - 2015 Nov 1
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Xeroderma pigmentosum group a suppresses mutagenesis caused by clustered oxidative DNA adducts in the human genome'. Together they form a unique fingerprint.

Cite this