(1, 2) and weak (1, 3) homotopies on knot projections

Noboru Ito, Yusuke Takimura

研究成果: Article査読

18 被引用数 (Scopus)

抄録

In this paper, we obtain the necessary and sufficient condition that two knot projections are related by a finite sequence of the first and second flat Reidemeister moves (Theorem 2.2). We also consider an equivalence relation that is called weak (1, 3) homotopy. This equivalence relation occurs by the first flat Reidemeister move and one of the third flat Reidemeister moves. We introduce a map sending weak (1, 3) homotopy classes to knot isotopy classes (Sec. 3). Using the map, we determine which knot projections are trivialized under weak (1, 3) homotopy (Corollary 4.1).

本文言語English
論文番号1350085
ジャーナルJournal of Knot Theory and its Ramifications
22
14
DOI
出版ステータスPublished - 2013 12月
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「(1, 2) and weak (1, 3) homotopies on knot projections」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル