2-Irreducibility of spatial graphs

Fengchun Lei*, Kouki Taniyama, Gengyu Zhang

*この研究の対応する著者

研究成果: Article査読

抄録

An embedded graph G in the 3-sphere S3 is called 2-irreducible if there are no separating spheres, cutting spheres, singular separating spheres, singular cutting spheres or 2-cutting spheres of G. Let D be a 2-disk in S3 that is very good for G. Let G' be an embedded graph in S 3 obtained from G by contracting D to a point. We show that if G' is 2-irreducible then G is 2-irreducible. By this criterion certain graphs are easily shown to be 2-irreducible. As an application we show a pair of embedded graphs in the 3-sphere which is distinguished by 2-irreducibility.

本文言語English
ページ(範囲)31-41
ページ数11
ジャーナルJournal of Knot Theory and its Ramifications
15
1
DOI
出版ステータスPublished - 2006 1月

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「2-Irreducibility of spatial graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル