A Bayesian positive dependence of survival times based on the multivariate arrangement increasing property

Yu Hayakawa*

*この研究の対応する著者

研究成果: Article査読

抄録

We introduce a new notion of positive dependence of survival times of system components using the multivariate arrangement increasing property. Following the spirit of Barlow and Mendel (J. Amer. Statist. Assoc. 87, 1116-1122), who introduced a new univariate aging notion relative to exchangeable populations of components, we characterize a multivariate positive dependence with respect to exchangeable multicomponent systems. Closure properties of such a class of distributions under some reliability operations are discussed. For an infinite population of systems our definition of multivariate positive dependence can be considered in the frequentist's paradigm as multivariate totally positive of order 2 with an independence condition. de Finetti(-type) representations for a particular class of survival functions are also given.

本文言語English
ページ(範囲)225-240
ページ数16
ジャーナルJournal of Statistical Planning and Inference
70
2
DOI
出版ステータスPublished - 1998 7月 15
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「A Bayesian positive dependence of survival times based on the multivariate arrangement increasing property」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル