A Bezoutian approach to orthogonal decompositions of trace forms or integral trace forms of some classical polynomials

Shuichi Otake*

*この研究の対応する著者

    研究成果: Article査読

    1 被引用数 (Scopus)

    抄録

    As Helmke and Fuhrmann pointed out, Bezoutian approaches have been considered to be fruitful for the study of trace forms. In this article, we study orthogonal decompositions of trace forms or integral trace forms of some classical polynomials via Bezoutians. In Section 3, we give another proof of a theorem of Feit about orthogonal decompositions of trace forms of generalized Laguerre polynomials. In Section 4, we consider integral trace forms of certain irreducible trinomials and give their orthogonal decompositions explicitly. Then, in Section 5, we obtain their canonical forms over Zp the ring of p-adic integers.

    本文言語English
    ページ(範囲)291-319
    ページ数29
    ジャーナルLinear Algebra and Its Applications
    471
    DOI
    出版ステータスPublished - 2015 4月 15

    ASJC Scopus subject areas

    • 代数と数論
    • 離散数学と組合せ数学
    • 幾何学とトポロジー
    • 数値解析

    フィンガープリント

    「A Bezoutian approach to orthogonal decompositions of trace forms or integral trace forms of some classical polynomials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル