A branch and prune algorithm for the computation of generalized aspects of parallel robots

S. Caro, D. Chablat, A. Goldsztejn*, D. Ishii, C. Jermann


    研究成果: Article査読

    25 被引用数 (Scopus)


    Parallel robots enjoy enhanced mechanical characteristics that have to be contrasted with a more complicated design. In particular, they often have parallel singularities at some poses, and the robots may become uncontrollable, and could even be damaged, in such configurations. The computation of the connected components in the set of nonsingular reachable configurations, called generalized aspects, is therefore a key issue in their design. This paper introduces a new method, based on numerical constraint programming, to compute a certified enclosure of the generalized aspects. Though this method does not allow counting their number rigorously, it constructs inner approximations of the nonsingular workspace that allow commanding parallel robots safely. It also provides a lower-bound on the exact number of generalized aspects. It is moreover the first general method able to handle any parallel robot in theory, though its computational complexity currently restricts its usage to robots with three degrees of freedom. Finally, the constraint programming paradigm it relies on makes it possible to consider various additional constraints (e.g., collision avoidance), making it suitable for practical considerations.

    ジャーナルArtificial Intelligence
    出版ステータスPublished - 2014

    ASJC Scopus subject areas

    • 人工知能
    • 言語および言語学
    • 言語学および言語


    「A branch and prune algorithm for the computation of generalized aspects of parallel robots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。