A convergence result for the ergodic problem for Hamilton–Jacobi equations with Neumann-type boundary conditions

Eman S. Al-Aidarous, Ebraheem O. Alzahrani, Hitoshi Ishii*, Arshad M M Younas

*この研究の対応する著者

    研究成果: Article査読

    15 被引用数 (Scopus)

    抄録

    We consider the ergodic (or additive eigenvalue) problem for the Neumann-type boundary-value problem for Hamilton–Jacobi equations and the corresponding discounted problems. Denoting by u λ the solution of the discounted problem with discount factor λ > 0, we establish the convergence of the whole family (Figure presented.) to a solution of the ergodic problem as λ → 0, and give a representation formula for the limit function via the Mather measures and Peierls function. As an interesting by-product, we introduce Mather measures associated with Hamilton–Jacobi equations with the Neumann-type boundary conditions. These results are variants of the main results in a recent paper by Davini et al., who study the same convergence problem on smooth compact manifolds without boundary.

    本文言語English
    ページ(範囲)1-18
    ページ数18
    ジャーナルRoyal Society of Edinburgh - Proceedings A
    DOI
    出版ステータスAccepted/In press - 2016 3月 3

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「A convergence result for the ergodic problem for Hamilton–Jacobi equations with Neumann-type boundary conditions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル