A cooperative behavior learning control of multi-robot using trace information

Tomofumi Ohshita*, Ji Sun Shin, Michio Miyazaki, Hee Hyol Lee

*この研究の対応する著者

研究成果: Conference contribution

抄録

The distributed autonomous robotic system has superiority of robustness and adaptability to dynamical environment, however, the system requires the cooperative behavior mutually for optimality of the system. The acquisition of action by reinforcement learning is known as one of the approaches when the multi-robot works with cooperation mutually for a complex task. This paper deals with the transporting problem of the multi-robot using Q-learning algorithm in the reinforcement learning. When a robot carries luggage, we regard it as that the robot leaves a trace to the own migrational path, which trace has feature of volatility, and then, the other robot can use the trace information to help the robot, which carries luggage. To solve these problems on multi-agent reinforcement learning, the learning control method using stress antibody allotment reward is used. Moreover, we propose the trace information of the robot to urge cooperative behavior of the multi-robot to carry luggage to a destination in this paper. The effectiveness of the proposed method is shown by simulation.

本文言語English
ホスト出版物のタイトルProceedings of the 13th International Symposium on Artificial Life and Robotics, AROB 13th'08
ページ397-400
ページ数4
出版ステータスPublished - 2008 12月 1
イベント13th International Symposium on Artificial Life and Robotics, AROB 13th'08 - Oita, Japan
継続期間: 2008 1月 312008 2月 2

出版物シリーズ

名前Proceedings of the 13th International Symposium on Artificial Life and Robotics, AROB 13th'08

Conference

Conference13th International Symposium on Artificial Life and Robotics, AROB 13th'08
国/地域Japan
CityOita
Period08/1/3108/2/2

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用

フィンガープリント

「A cooperative behavior learning control of multi-robot using trace information」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル