抄録
An effective multiscale treatment of turbulent reacting flows is presented with the use of a stabilized finite element formulation. The method proposed is developed based on the streamline-upwind/Petrov-Galerkin (SUPG) formulation, and includes discontinuity capturing in the form of a new generation "DRD" method, namely the "DRDJ" technique. The stabilized formulation is applied to finite-rate chemistry modelling based on mixture-fraction approaches with the so-called presumed-PDF technique. The turbulent combustion process is simulated for an aero-engine combustor configuration of RQL concept in non-premixed flame regime. The comparative analysis of the temperature and velocity fields demonstrate that the proposed SUPG+DRDJ formulation outperforms the stand-alone SUPG method. The improved accuracy is demonstrated in terms of the combustor overall performance, and the mechanisms involved in the distribution of the numerical diffusivity are also discussed.
本文言語 | English |
---|---|
ページ(範囲) | 159-167 |
ページ数 | 9 |
ジャーナル | Computational Mechanics |
巻 | 46 |
号 | 1 |
DOI | |
出版ステータス | Published - 2010 6月 |
外部発表 | はい |
ASJC Scopus subject areas
- 計算力学
- 海洋工学
- 機械工学
- 計算理論と計算数学
- 計算数学
- 応用数学