A free energy Lagrangian variational formulation of the Navier-Stokes-Fourier system

François Gay-Balmaz, Hiroaki Yoshimura

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We present a variational formulation for the Navier-Stokes-Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite-dimensional extension of the variational approach to the thermodynamics of discrete systems using the free energy, which complements the Lagrangian variational formulation using the internal energy developed in [F. Gay-Balmaz and H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics, Part II: Continuum systems, J. Geom. Phys. 111 (2017) 194-212] as one employs temperature, rather than entropy, as an independent variable. The variational derivation is first expressed in the material (or Lagrangian) representation, from which the spatial (or Eulerian) representation is deduced. The variational framework is intrinsically written in a differential-geometric form that allows the treatment of the Navier-Stokes-Fourier system on Riemannian manifolds.

本文言語English
論文番号1940006
ジャーナルInternational Journal of Geometric Methods in Modern Physics
16
DOI
出版ステータスPublished - 2019 2月 1

ASJC Scopus subject areas

  • 物理学および天文学(その他)

フィンガープリント

「A free energy Lagrangian variational formulation of the Navier-Stokes-Fourier system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル