A geometry-based two-step method for nonlinear classification using quasi-linear support vector machine

Weite Li, Bo Zhou, Benhui Chen*, Jinglu Hu

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

This paper proposes a two-step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry-based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data-dependent quasi-linear kernel composed of the information of the local linear partitions. Numerical experiments on several real-world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance.

本文言語English
ページ(範囲)883-890
ページ数8
ジャーナルIEEJ Transactions on Electrical and Electronic Engineering
12
6
DOI
出版ステータスPublished - 2017 11月

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「A geometry-based two-step method for nonlinear classification using quasi-linear support vector machine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル