A graph-theoretic approach to sparse matrix inversion for implicit differential algebraic equations

H. Yoshimura*

*この研究の対応する著者

研究成果: Article査読

抄録

In this paper, we propose an efficient numerical scheme to compute sparse matrix inversions for Implicit Differential Algebraic Equations of large-scale nonlinear mechanical systems. We first formulate mechanical systems with constraints by Dirac structures and associated Lagrangian systems. Second, we show how to allocateinput-output relationsto the variables in kinematical and dynamical relations appearing in DAEs by introducing an oriented bipartite graph. Then, we also show that the matrix inversion of Jacobian matrix associated to the kinematical and dynamical relations can be carried out by using the input-output relations and we explain solvability of the sparse Jacobian matrix inversion by using the bipartite graph. Finally, we propose an efficient symbolic generation algorithm to compute the sparse matrix inversion of the Jacobian matrix, and we demonstrate the validity in numerical efficiency by an example of the stanford manipulator.

本文言語English
ページ(範囲)243-250
ページ数8
ジャーナルMechanical Sciences
4
1
DOI
出版ステータスPublished - 2013

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 土木構造工学
  • 材料力学
  • 機械工学
  • 流体および伝熱
  • 産業および生産工学

フィンガープリント

「A graph-theoretic approach to sparse matrix inversion for implicit differential algebraic equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル