A kinetic approach to comparison properties for degenerate parabolic-hyperbolic equations with boundary conditions

Kazuo Kobayashi*

*この研究の対応する著者

    研究成果: Article査読

    12 被引用数 (Scopus)

    抄録

    We study the comparison principle for degenerate parabolic-hyperbolic equations with initial and nonhomogeneous boundary conditions. We prove a comparison theorem for any entropy sub- and supersolution. The L1 contractivity and, therefore, uniqueness of entropy solutions has been obtained so far by some authors, but it seems that any comparison theorem is not proven. The method used there is the doubling variable technique due to Kružkov. Our method is based upon the kinetic formulation and the kinetic techniques. By developing the kinetic techniques for degenerate parabolic-hyperbolic equations with boundary conditions, we can obtain a comparison property which obviously extends the L1 contractive property.

    本文言語English
    ページ(範囲)682-701
    ページ数20
    ジャーナルJournal of Differential Equations
    230
    2
    DOI
    出版ステータスPublished - 2006 11月 15

    ASJC Scopus subject areas

    • 分析

    フィンガープリント

    「A kinetic approach to comparison properties for degenerate parabolic-hyperbolic equations with boundary conditions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル