抄録
A formulated kinetic theory for thermal oxidation of silicon is presented in detail. The theory does not involve the rate-limiting step of the interfacial oxidation reaction, instead it is supposed that the diffusivity is suppressed in a strained oxide region near the Si O2 Si interface. The expression of the parabolic constant is the same as that of the Deal-Grove model, while the linear constant makes a clear distinction with the model. The estimated thickness using the expression is close to 1 nm, which compares well with the thickness of the structural transition layer. The origin of the deviation from the linear-parabolic relationship observed at initial oxidation stages can be explained by the enhanced diffusion hypothesis, which is the opposite conclusion to the Deal-Grove theory.
本文言語 | English |
---|---|
ページ(範囲) | G270-G276 |
ジャーナル | Journal of the Electrochemical Society |
巻 | 154 |
号 | 12 |
DOI | |
出版ステータス | Published - 2007 11月 1 |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 再生可能エネルギー、持続可能性、環境
- 表面、皮膜および薄膜
- 電気化学
- 材料化学