A Lie-theoretic Description of the Solution Space of the tt*-Toda Equations

Martin A. Guest*, Nan Kuo Ho

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We give a Lie-theoretic explanation for the convex polytope which parametrizes the globally smooth solutions of the topological-antitopological fusion equations of Toda type (tt -Toda equations) which were introduced by Cecotti and Vafa. It is known from Guest and Lin (J. Reine Angew. Math. 689, 1–32 2014) Guest et al. (It. Math. Res. Notices 2015, 11745–11784 2015) and Mochizuki (2013, 2014) that these solutions can be parametrized by monodromy data of a certain flat SLn+ 1ℝ-connection. Using Boalch’s Lie-theoretic description of Stokes data, and Steinberg’s description of regular conjugacy classes of a linear algebraic group, we express this monodromy data as a convex subset of a Weyl alcove of SUn+ 1.

本文言語English
論文番号24
ジャーナルMathematical Physics Analysis and Geometry
20
4
DOI
出版ステータスPublished - 2017 12月 1

ASJC Scopus subject areas

  • 数理物理学
  • 幾何学とトポロジー

フィンガープリント

「A Lie-theoretic Description of the Solution Space of the tt*-Toda Equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル