A lightweight anomaly detection system for information appliances

Midori Sugaya*, Yuki Ohno, Andrej Van Der Zee, Tatsuo Nakajima

*この研究の対応する著者

研究成果: Conference contribution

7 被引用数 (Scopus)

抄録

In this paper, a novel lightweight anomaly and fault detection infrastructure called Anomaly Detection by ResourceMonitoring (Ayaka) is presented for Information Appliances. Ayaka provides a general monitoring method for detecting anomalies using only resource usage information on systems independent of its domain, target application, and programming languages. Ayaka modifies the kernel to detect faults and uses a completely application black-box approach based on machine learning methods. It uses the clustering method to quantize the resource usage vector data and learn the normal patterns with a hidden Markov Model. In the running phase, Ayaka finds anomalies by comparing the application resource usage with the learned model. The evaluation experiment indicates that our prototype system is able to detect anomalies, such as SQL injection and buffer overrun, without significant overheads.

本文言語English
ホスト出版物のタイトルProceedings of the 2009 IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2009
ページ257-266
ページ数10
DOI
出版ステータスPublished - 2009
イベント2009 IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2009 - Tokyo, Japan
継続期間: 2009 3月 172009 3月 20

出版物シリーズ

名前Proceedings of the 2009 IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2009

Conference

Conference2009 IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2009
国/地域Japan
CityTokyo
Period09/3/1709/3/20

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • ソフトウェア

フィンガープリント

「A lightweight anomaly detection system for information appliances」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル