A linear manifold color descriptor for medicine package recognition

Kenjiro Sugimoto*, Koji Inoue, Yoshimitsu Kuroki, Sei Ichiro Kamata


研究成果: Article査読

1 被引用数 (Scopus)


This paper presents a color-based method for medicine package recognition, called a linear manifold color descriptor (LMCD). It describes a color distribution (a set of color pixels) of a color package image as a linear manifold (an affine subspace) in the color space, and recognizes an anonymous package by linear manifold matching. Mainly due to low dimensionality of color spaces, LMCD can provide more compact description and faster computation than description styles based on histogram and dominant-color. This paper also proposes distance-based dissimilarities for linear manifold matching. Specially designed for color distribution matching, the proposed dissimilarities are theoretically appropriate more than J-divergence and canonical angles. Experiments on medicine package recognition validates that LMCD outperforms competitors including MPEG-7 color descriptors in terms of description size, computational cost and recognition rate.

ジャーナルIEICE Transactions on Information and Systems
出版ステータスPublished - 2012 5月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能


「A linear manifold color descriptor for medicine package recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。