抄録
Memory accesses take a large part of the power consumption in the iterative decoding of double-binary convolutional turbo code (DB-CTC). To deal with this, a low-memory intensive decoding architecture is proposed for DB-CTC in this paper. The new scheme is based on an improved maximum a posteriori probability algorithm, where instead of storing all of the state metrics, only a part of these state metrics is stored in the state metrics cache (SMC), and the memory size of the SMC is thus reduced by 25%. Owing to a compare-select-recalculate processing (CSRP) module in the proposed decoding architecture, the unstored state metrics are recalculated by simple operations, while maintaining near optimal decoding performance.
本文言語 | English |
---|---|
ページ(範囲) | 202-213 |
ページ数 | 12 |
ジャーナル | Turkish Journal of Electrical Engineering and Computer Sciences |
巻 | 22 |
号 | 1 |
DOI | |
出版ステータス | Published - 2014 |
ASJC Scopus subject areas
- コンピュータ サイエンス(全般)
- 電子工学および電気工学