A low-memory intensive decoding architecture for double-binary convolutional turbo code

Ming Zhan*, Liang Zhou, Jun Wu

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Memory accesses take a large part of the power consumption in the iterative decoding of double-binary convolutional turbo code (DB-CTC). To deal with this, a low-memory intensive decoding architecture is proposed for DB-CTC in this paper. The new scheme is based on an improved maximum a posteriori probability algorithm, where instead of storing all of the state metrics, only a part of these state metrics is stored in the state metrics cache (SMC), and the memory size of the SMC is thus reduced by 25%. Owing to a compare-select-recalculate processing (CSRP) module in the proposed decoding architecture, the unstored state metrics are recalculated by simple operations, while maintaining near optimal decoding performance.

本文言語English
ページ(範囲)202-213
ページ数12
ジャーナルTurkish Journal of Electrical Engineering and Computer Sciences
22
1
DOI
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 電子工学および電気工学

フィンガープリント

「A low-memory intensive decoding architecture for double-binary convolutional turbo code」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル