A Machine Learning-based Non-precipitating Clouds Estimation for THz Dual-Frequency Radar

Kazuhiko Tamesue*, Zheng Wen, Shotaro Yamaguchi, Hiroyuki Kasai, Wataru Kameyama, Toshio Sato, Yutaka Katsuyama, Takuro Sato, Takeshi Maesaka

*この研究の対応する著者

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Accurate measurement of non-precipitable clouds is important for early prediction of heavy rainfall disasters caused by extreme weather events. However, microwave cloud radar cannot observe the early stages of cloud development from non-precipitation clouds (cumulus) to cumulonimbus. In this paper, we propose a terahertz dual-frequency cloud radar using 150 GHz and 95 GHz bands to detect cloud particles in cumulus smaller than 10 μm. Using a dataset generated by the ITU-R radio propagation model, we estimate the liquid water content of non-precipitation clouds and water vapor content in atmospheric gases, respectively, by using a machine learning-based approach. The effectiveness of using the dual wavelength ratio as an explanatory variable is examined.

本文言語English
ホスト出版物のタイトル2023 IEEE Conference on Antenna Measurements and Applications, CAMA 2023
出版社Institute of Electrical and Electronics Engineers
ページ376-380
ページ数5
ISBN(電子版)9798350323047
DOI
出版ステータスPublished - 2023
イベント2023 IEEE Conference on Antenna Measurements and Applications, CAMA 2023 - Genoa, Italy
継続期間: 2023 11月 152023 11月 17

出版物シリーズ

名前IEEE Conference on Antenna Measurements and Applications, CAMA
ISSN(印刷版)2474-1760
ISSN(電子版)2643-6795

Conference

Conference2023 IEEE Conference on Antenna Measurements and Applications, CAMA 2023
国/地域Italy
CityGenoa
Period23/11/1523/11/17

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 器械工学
  • 放射線

フィンガープリント

「A Machine Learning-based Non-precipitating Clouds Estimation for THz Dual-Frequency Radar」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル