A maximum likelihood, nonmetric multidimensional scaling procedure for word sequences obtained in free-recall experiments

Kenpei Shiina*

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A maximum likelihood nonmetric multidimensional scaling procedure is developed for word sequences obtained in free-recall experiments in order to spatialy represent the structure of semantic memory. A Monte Carlo simulation showed that this procedure can reproduce given configulations, and a tentative application to empirical data (free-recall data of historical personages by the author as the subject) gave promising results. The procedure has two aspects: mathematical modeling of free-recall and the application of the constant utility model (Luce & Suppes, 1965) to multidimensional scaling. Relations to other maximum likelihood MDS’s and the SAM model for memory retrieval (Raaijmakers & Shiffrin, 1981) are discussed.

本文言語English
ページ(範囲)53-63
ページ数11
ジャーナルJapanese Psychological Research
28
2
DOI
出版ステータスPublished - 1986

ASJC Scopus subject areas

  • 心理学(全般)

フィンガープリント

「A maximum likelihood, nonmetric multidimensional scaling procedure for word sequences obtained in free-recall experiments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル