A mechanical model of Brownian motion for one massive particle including low energy light particles in dimension d ≥ 3

研究成果: Article査読

抄録

We provide a connection between Brownian motion and a classical Newton mechanical system in dimension d ≥ 3. This paper is an extension of [S. Liang, A mechanical model of Brownian motion for one massive particle including slow light particles, J. Stat. Phys. 170 2018, 2, 286-350]. Precisely, we consider a system of one massive particle interacting with an ideal gas, evolved according to non-random Newton mechanical principles, via interaction potentials, without any assumption requiring that the initial energies of the environmental particles should be restricted to be "high enough". We prove that, as in the high-dimensional case, the position/velocity process of the massive particle converges to a diffusion process when the mass of the environmental particles converges to 0, while the density and the velocities of them go to infinity.

本文言語English
ページ(範囲)203-235
ページ数33
ジャーナルRandom Operators and Stochastic Equations
29
3
DOI
出版ステータスPublished - 2021 9月 1

ASJC Scopus subject areas

  • 分析
  • 統計学および確率

フィンガープリント

「A mechanical model of Brownian motion for one massive particle including low energy light particles in dimension d ≥ 3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル