A Method of Analysing Soliton Equations by Bilinearization

Shin'ichi Oishi*

*この研究の対応する著者

研究成果: Article査読

抄録

Recently, a class of new solutions have been derived for a number of soliton equations using Hirota's bilinear forms of these soliton equations (S. Oishi: J. Phys. Soc. Jpn. 47 (1979) 1341). These solutions express solitons in a background of ripples, and are named generalized soliton solutions. In this paper, it is shown that the generalized soliton solutions for the Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation can be transformed into a form of Fredholm's determinants of the Gel'fand-Levitan-Marchenko integral equation. Using this result, relationship between Hirota's method and the inverse spectral method is clarified. Moreover, it is also shown that the initial value problems for these two equations can be solved using their generalized soliton solutions.

本文言語English
ページ(範囲)639-646
ページ数8
ジャーナルjournal of the physical society of japan
48
2
DOI
出版ステータスPublished - 1980

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「A Method of Analysing Soliton Equations by Bilinearization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル