A method of verified computations for solutions to semilinear parabolic equations using semigroup theory

Makoto Mizuguchi*, Akitoshi Takayasu, Takayuki Kubo, Shinichi Oishi

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

This paper presents a numerical method for verifying the existence and local uniqueness of a solution for an initial-boundary value problem of semilinear parabolic equations. The main theorem of this paper provides a sufficient condition for a unique solution to be enclosed within a neighborhood of a numerical solution. In the formulation used in this paper, the initial-boundary value problem is transformed into a fixed-point form using an analytic semigroup. The sufficient condition is derived from Banach's fixed-point theorem. This paper also introduces a recursive scheme to extend a time interval in which the validity of the solution can be verified. As an application of this method, the existence of a global-in-time solution is demonstrated for a certain semilinear parabolic equation.

本文言語English
ページ(範囲)980-1001
ページ数22
ジャーナルSIAM Journal on Numerical Analysis
55
2
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 数値解析
  • 計算数学
  • 応用数学

フィンガープリント

「A method of verified computations for solutions to semilinear parabolic equations using semigroup theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル