A necessary and sufficient condition for stable matching rules to be strategy-proof

Takashi Akahoshi*

*この研究の対応する著者

    研究成果: Article査読

    4 被引用数 (Scopus)

    抄録

    We study one-to-one matching problems and analyze conditions on preference domains that admit the existence of stable and strategy-proof rules. In this context, when a preference domain is unrestricted, it is known that no stable rule is strategy-proof. We introduce the notion of the no-detour condition, and show that under this condition, there is a stable and group strategy-proof rule. In addition, we show that when the men’s preference domain is unrestricted, the no-detour condition is also a necessary condition for the existence of stable and strategy-proof rules. As a result, under the assumption that the men’s preference domain is unrestricted, the following three statements are equivalent: (i) a preference domain satisfies the no-detour condition, (ii) there is a stable and group strategy-proof rule, (iii) there is a stable and strategy-proof rule.

    本文言語English
    ページ(範囲)683-702
    ページ数20
    ジャーナルSocial Choice and Welfare
    43
    3
    DOI
    出版ステータスPublished - 2014

    ASJC Scopus subject areas

    • 経済学、計量経済学
    • 社会科学(その他)

    フィンガープリント

    「A necessary and sufficient condition for stable matching rules to be strategy-proof」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル