A neural network classifier for LANDSAT image data

Sei Ichiro Kamata, Richard O. Eason, Arnulfo Perez, Eiji Kawaguchi

研究成果: Conference contribution

8 被引用数 (Scopus)

抄録

There have been many new developments in neural network (NN) research, and many new applications have been studied. The classification of remotely sensed multispectral data using classical statistical methods has been worked on for several decades. Among the multispectral data, we concentrate on the LANDSAT-5 Thematic Mapper (TM) image data which has been available since 1984-Using the classical maximum likelihood approach, a category is modeled as a multivariate normal distribution; however, the distribution for LANDSAT images is unknown. It is well known that NN approaches have the ability to classify without assuming a distribution. We apply the NN approach to the classification of LANDSAT TM images in order to investigate the robustness of this approach for multi temporal data classification. We confirmed that the NN approach is effective for the classification even if the test data is taken at the different time.

本文言語English
ホスト出版物のタイトルConference B
ホスト出版物のサブタイトルPattern Recognition Methodology and Systems
出版社Institute of Electrical and Electronics Engineers Inc.
ページ573-576
ページ数4
ISBN(印刷版)0818629150
DOI
出版ステータスPublished - 1992
外部発表はい
イベント11th IAPR International Conference on Pattern Recognition, IAPR 1992 - The Hague, Netherlands
継続期間: 1992 8月 301992 9月 3

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
2
ISSN(印刷版)1051-4651

Other

Other11th IAPR International Conference on Pattern Recognition, IAPR 1992
国/地域Netherlands
CityThe Hague
Period92/8/3092/9/3

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「A neural network classifier for LANDSAT image data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル