A new aspect of the arnold invariant J+ from a global viewpoint

Kenta Hayano, Noboru Ito

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In this paper, we study the Arnold invariant J+ for plane and spherical curves. This invariant essentially counts the number of a certain type of local moves called direct self-tangency perestroika in a generic regular homotopy from a standard curve to a given one; the other basic local moves, namely inverse self- tangency perestroika and triple point crossing, do not change the value of J+. Thus, behavior of J+ under local moves is rather obvious. However, it is less understood how J+ behaves in the space of curves on a global scale. We study this problem using Legendrian knots, and give infinitely many regular homotopic curves with the same J+ that cannot be mutually related by inverse self-tangency perestroika and triple point crossing.

本文言語English
ページ(範囲)1343-1357
ページ数15
ジャーナルIndiana University Mathematics Journal
64
5
DOI
出版ステータスPublished - 2015
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A new aspect of the arnold invariant J+ from a global viewpoint」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル