A new class of disordered systems a modified Bernoulli system with long range structural correlation

Masaki Goda*, Hiroaki Yamada, Yoji Aizawa, Kaoru Kurumi, Akira Shudo, Haruhiko Kubo

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Spectral property and Lyapunov exponent of electronic wave function (L-exponent) in a modified Bernoulli system with inverse-power-law structural correlation, is studied in detail numerically and theoretically. By changing the value of the bifurcation parameter B specifying a strength of the correlation in the interval (1, ∞), two transitions (a transition around B = 3/2 and another one at B = 2) appear. For the case 3/2 ≤ B <2 of long-range structural correlation, two peaks appear and compete in the distribution function of L-exponent of finite system and the distribution does not obey the central-limit theorem. At the critical point B = 2 (and also for B>2), Lexponent in infinite system vanishes with probability 1.

本文言語English
ページ(範囲)2295-2304
ページ数10
ジャーナルJournal of the Physical Society of Japan
60
7
出版ステータスPublished - 1991 7月

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「A new class of disordered systems a modified Bernoulli system with long range structural correlation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル