A new paradigm of computer graphics by universal solver for solid, liquid and gas

Takashi Yabe*, Kenji Takizawa, Feng Xiao, Takayuki Aoki, Takehiro Himeno, Tsunemi Takahashi, Atsushi Kunimatsu

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We propose a new algorithm for producing computer graphics of melting and evaporation process of matter. Such a computation becomes possible by a universal solver for solid, liquid and gas based on the CIP (Cubic-Interpolated Propagation/Constrained Interpolation Profile) method proposed by one of the authors. This method can also be applied to the movement, deformation and even break up of solid, liquid and gas in one simple algorithm. Therefore seamless computation of all the phases of matter becomes possible. This enables us to reproduce natural phenomena in some instances by computation. In order to demonstrate this reality, we show how precisely the computational result replicates the movies of real phenomena. The flattering motions of metal disk in water and thin name card in air are treated showing accuracy of force calculation on the surface of sub-grid scale. Although the CIP uses semi-Lagrangian form algorithm, the exact mass conservation is guaranteed by additional tool. By using this scheme, separation of a bubble in bifurcation tube and splashing of water surface are successfully simulated.

本文言語English
ページ(範囲)656-663
ページ数8
ジャーナルJSME International Journal, Series B: Fluids and Thermal Engineering
47
4
DOI
出版ステータスPublished - 2004 11月
外部発表はい

ASJC Scopus subject areas

  • 機械工学
  • 物理化学および理論化学
  • 流体および伝熱

フィンガープリント

「A new paradigm of computer graphics by universal solver for solid, liquid and gas」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル