抄録
Rectangular shape object detection in color images is a critical step of many image recognition systems. However, there are few reports on this matter. In this paper, we proposed a hierarchical approach, which combines a global contour based line segment detection algorithm and an Markov Random Field (MRF) Model, to extract rectangular shape objects from real color images. First, we use an elaborate edge detection algorithm to obtain image edge map and accurate edge pixel gradient information (magnitude and direction). Then line segments are extracted from the edge map and some neighboring parallel segments are merged into a single line segment. Finally all segments lying on the boundary of unknown rectangular shape objects are labeled via an MRF Model built on line segments. Experimental results show that our method is robust in locating multiple rectangular shape objects simultaneously with respect to different size, orientation and color.
本文言語 | English |
---|---|
ページ | 386-393 |
ページ数 | 8 |
DOI | |
出版ステータス | Published - 2006 12月 1 |
イベント | 5th IEEE International Conference on Cognitive Informatics, ICCI 2006 - Beijing, China 継続期間: 2006 7月 17 → 2006 7月 19 |
Conference
Conference | 5th IEEE International Conference on Cognitive Informatics, ICCI 2006 |
---|---|
国/地域 | China |
City | Beijing |
Period | 06/7/17 → 06/7/19 |
ASJC Scopus subject areas
- 人工知能
- 情報システム