A novel lambertian-RBFNN for office light modeling

Wa Si, Xun Pan, Harutoshi Ogai, Katsumi Hirai

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In lighting control systems, accurate data of artificial light (lighting coefficients) are essential for the illumination control accuracy and energy saving efficiency. This research proposes a novel Lambertian-Radial Basis Function Neural Network (L-RBFNN) to realize modeling of both lighting coefficients and the illumination environment for an of-fice. By adding a Lambertian neuron to represent the rough theoretical illuminance distribution of the lamp and modifying RBF neurons to regulate the distribution shape, L-RBFNN successfully solves the instability problem of conventional RBFNN and achieves higher modeling accuracy. Simulations of both single-light modeling and multiple-light modeling are made and compared with other methods such as Lambertian function, cubic spline interpolation and conventional RBFNN. The results prove that: 1) L-RBFNN is a successful modeling method for artificial light with imperceptible modeling error; 2) Compared with other existing methods, LRBFNN can provide better performance with lower modeling error; 3) The number of training sensors can be reduced to be the same with the number of lamps, thus making the modeling method easier to apply in real-world lighting systems.

本文言語English
ページ(範囲)1742-1752
ページ数11
ジャーナルIEICE Transactions on Information and Systems
E99D
7
DOI
出版ステータスPublished - 2016 7月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「A novel lambertian-RBFNN for office light modeling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル