A novel video detection design based on modified adaboost algorithm and HSV model

Xiao Luo, Huatao Zhao, Harutoshi Ogai, Chen Zhu

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

In modern traffic systems, accurate video detection is a key challenge for traffic management. Aiming at the problem of public bus detection, this paper proposes a video detection method to well recognize the buses. Firstly, we employ the foreground detection method to find the moving vehicles. And then a training classifier which consists of the improved Adaboost algorithm and Haar-like features is proposed to filter undesired vehicles. Secondly, we use the Canny operator to locate bus characteristics, and further detect the bus with the modified HSV model. This design is tested on the Visual Stadio and OpenCV platform in which load the urban transport data as the samples. The test results show that our detection method has better robustness than both three-frame differential method and hybrid Gaussian method, and the accuracy of detection on the window positioning is more than 93 percent.

本文言語English
ホスト出版物のタイトルProceedings of 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2328-2331
ページ数4
ISBN(電子版)9781467389778
DOI
出版ステータスPublished - 2017 9月 29
イベント2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017 - Chongqing, China
継続期間: 2017 3月 252017 3月 26

Other

Other2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017
国/地域China
CityChongqing
Period17/3/2517/3/26

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • ハードウェアとアーキテクチャ
  • 情報システム
  • 電子工学および電気工学
  • 制御と最適化
  • 情報システムおよび情報管理

フィンガープリント

「A novel video detection design based on modified adaboost algorithm and HSV model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル