抄録
In modern traffic systems, accurate video detection is a key challenge for traffic management. Aiming at the problem of public bus detection, this paper proposes a video detection method to well recognize the buses. Firstly, we employ the foreground detection method to find the moving vehicles. And then a training classifier which consists of the improved Adaboost algorithm and Haar-like features is proposed to filter undesired vehicles. Secondly, we use the Canny operator to locate bus characteristics, and further detect the bus with the modified HSV model. This design is tested on the Visual Stadio and OpenCV platform in which load the urban transport data as the samples. The test results show that our detection method has better robustness than both three-frame differential method and hybrid Gaussian method, and the accuracy of detection on the window positioning is more than 93 percent.
本文言語 | English |
---|---|
ホスト出版物のタイトル | Proceedings of 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017 |
出版社 | Institute of Electrical and Electronics Engineers Inc. |
ページ | 2328-2331 |
ページ数 | 4 |
ISBN(電子版) | 9781467389778 |
DOI | |
出版ステータス | Published - 2017 9月 29 |
イベント | 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017 - Chongqing, China 継続期間: 2017 3月 25 → 2017 3月 26 |
Other
Other | 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017 |
---|---|
国/地域 | China |
City | Chongqing |
Period | 17/3/25 → 17/3/26 |
ASJC Scopus subject areas
- コンピュータ ネットワークおよび通信
- コンピュータ ビジョンおよびパターン認識
- ハードウェアとアーキテクチャ
- 情報システム
- 電子工学および電気工学
- 制御と最適化
- 情報システムおよび情報管理