A numerical study of isotropic and anisotropic ablation in MCCI by MPS method

Xin Li, Akifumi Yamaji*

*この研究の対応する著者

研究成果: Article査読

36 被引用数 (Scopus)

抄録

Anisotropic and isotropic ablation in molten corium-concrete interaction (MCCI) phenomenon was studied with the Moving Particle Semi-implicit (MPS) method by carrying out numerical simulations of CCI-2 and 3 experiments. The interaction of the fully oxidized PWR core melts with specially-designed two-dimensional limestone and siliceous concrete test sections was analyzed, focusing on investigating the two-dimensional ablation behavior with both limestone and siliceous concrete. The phase transition of molten corium and concrete was modeled based on a phase transition model for mixture. Slag film model and crust dissolution models were incorporated in the current MPS code to simulate the effect of gas generation and crust dissolution phenomena in limestone concrete. The effects of gas generation and aggregates on the concrete ablation behavior were investigated by simulating different specially designed cases. The simulation results by MPS method reproduced the isotropic and anisotropic cavity ablation profile and the overall axial and lateral ablation rates agreed well with the experimental measures. The experimental and MPS results both indicate that the crust on the corium-concrete interface can play an important part in concrete ablation process. The simulation results by MPS method also provide evidence to support the theory that aggregates are part of the cause of anisotropic ablation profile in cavity with siliceous concrete because aggregates could delay the axial basemat ablation more significantly than the lateral one and influence the power split in the melt pool.

本文言語English
ページ(範囲)46-57
ページ数12
ジャーナルProgress in Nuclear Energy
90
DOI
出版ステータスPublished - 2016 7月 1

ASJC Scopus subject areas

  • 原子力エネルギーおよび原子力工学
  • 安全性、リスク、信頼性、品質管理
  • エネルギー工学および電力技術
  • 廃棄物管理と処理

フィンガープリント

「A numerical study of isotropic and anisotropic ablation in MCCI by MPS method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル