TY - JOUR
T1 - A pagerank-inspired heuristic scheme for influence maximization in social networks
AU - Zhang, Bo
AU - Wang, Yufeng
AU - Jin, Qun
AU - Ma, Jianhua
N1 - Funding Information:
This research is support by the NSFC Grant 61171092, JiangSu 973 project BK2011027, and JiangSu Educational Bureau Project 14KJA510004.
Publisher Copyright:
Copyright © 2015, IGI Global.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - This article focused on seeking a new heuristic algorithm for the influence maximization problem in complex social networks, in which a small subset of individuals are intentionally selected as seeds to trigger a large cascade of further adoptions of a new behavior under certain influence cascade models. In literature, degree and other centrality-based heuristics are commonly used to estimate the influential power of individuals in social networks. The major issues with degree-based heuristics are twofold. First, those results are only derived for the uniform IC model, in which propagation probabilities on all social links are set as same, which is rarely the case in reality; Second, intuitively, an individual's influence power depends not only on the number of direct friends, but also relates to kinds of those friends, that is, the neighbors' influence should also be taken into account when measuring one's influential power. Based on the general weighted cascade model (WC), this article proposes Pagerank-inspired heuristic scheme, PRDiscount, which explicitly discounts the influence power of those individuals who have social relationships with chosen seeds, to alleviate the "overlapping effect" occurred in behavior diffusion. Then, the authors use both the artificially constructed social network graphs (with the features of power-law degree distribution and small-world characteristics) and the real-data traces of social networks to verify the performance of their proposal. Simulations illustrate that PRDiscount can advantage over the existing degree-based discount algorithm, DegreeDiscount, and achieve the comparable performance as greedy algorithm.
AB - This article focused on seeking a new heuristic algorithm for the influence maximization problem in complex social networks, in which a small subset of individuals are intentionally selected as seeds to trigger a large cascade of further adoptions of a new behavior under certain influence cascade models. In literature, degree and other centrality-based heuristics are commonly used to estimate the influential power of individuals in social networks. The major issues with degree-based heuristics are twofold. First, those results are only derived for the uniform IC model, in which propagation probabilities on all social links are set as same, which is rarely the case in reality; Second, intuitively, an individual's influence power depends not only on the number of direct friends, but also relates to kinds of those friends, that is, the neighbors' influence should also be taken into account when measuring one's influential power. Based on the general weighted cascade model (WC), this article proposes Pagerank-inspired heuristic scheme, PRDiscount, which explicitly discounts the influence power of those individuals who have social relationships with chosen seeds, to alleviate the "overlapping effect" occurred in behavior diffusion. Then, the authors use both the artificially constructed social network graphs (with the features of power-law degree distribution and small-world characteristics) and the real-data traces of social networks to verify the performance of their proposal. Simulations illustrate that PRDiscount can advantage over the existing degree-based discount algorithm, DegreeDiscount, and achieve the comparable performance as greedy algorithm.
KW - Heuristic
KW - Influence maximization
KW - Overlapping effect
KW - Pagerank
KW - Word-of-mouth
UR - http://www.scopus.com/inward/record.url?scp=84954556542&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954556542&partnerID=8YFLogxK
U2 - 10.4018/IJWSR.2015100104
DO - 10.4018/IJWSR.2015100104
M3 - Article
AN - SCOPUS:84954556542
SN - 1545-7362
VL - 12
SP - 48
EP - 62
JO - International Journal of Web Services Research
JF - International Journal of Web Services Research
IS - 4
ER -