A Personalized Federated Learning Scheme for Operational Parameter Determination of PV Smart Inverters

Yu Fujimoto*, Nanae Kaneko, So Takahashi, Akihisa Kaneko, Yutaka Iino, Yasuhiro Hayashi

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

With the increasing integration of distributed photovoltaic (PV) systems into distribution networks, voltage regulation has become a significant challenge. Smart inverters (SIs) that allow remote switching of reactive/active power control parameters via communication commands provide a flexible solution for voltage regulation in PV-dominated systems. However, this requires the distribution system operator (DSO) to determine appropriate operational parameters for individual inverters to ensure fair and effective operation, avoiding potential loss of PV generation opportunities. This study proposes a personalized federated learning framework to optimize the SI control parameters. The DSO utilizes statistical data on voltage and potential PV generation at each point and shares control sensitivities among the connection points with similar power flow conditions. This approach efficiently derives the tailor-made control parameter for each inverter, improving voltage control, minimizing PV generation opportunity losses, and ensuring fairness among PV owners. Numerical simulations on a high-PV penetration distribution model demonstrate the framework's potential to enhance voltage regulation and PV utilization.

本文言語English
ホスト出版物のタイトル13th International Conference on Renewable Energy Research and Applications, ICRERA 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ475-480
ページ数6
ISBN(電子版)9798350375589
DOI
出版ステータスPublished - 2024
イベント13th International Conference on Renewable Energy Research and Applications, ICRERA 2024 - Nagasaki, Japan
継続期間: 2024 11月 92024 11月 13

出版物シリーズ

名前13th International Conference on Renewable Energy Research and Applications, ICRERA 2024

Conference

Conference13th International Conference on Renewable Energy Research and Applications, ICRERA 2024
国/地域Japan
CityNagasaki
Period24/11/924/11/13

ASJC Scopus subject areas

  • 電子工学および電気工学
  • 安全性、リスク、信頼性、品質管理
  • 制御と最適化
  • エネルギー工学および電力技術
  • 再生可能エネルギー、持続可能性、環境

フィンガープリント

「A Personalized Federated Learning Scheme for Operational Parameter Determination of PV Smart Inverters」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル