A posteriori verification of the positivity of solutions to elliptic boundary value problems

Kazuaki Tanaka*, Taisei Asai

*この研究の対応する著者

研究成果: Article査読

抄録

The purpose of this paper is to develop a unified a posteriori method for verifying the positivity of solutions of elliptic boundary value problems by assuming neither H2-regularity nor L-error estimation, but only H01-error estimation. In (J Comput Appl Math 370:112647, 2020), we proposed two approaches to verify the positivity of solutions of several semilinear elliptic boundary value problems. However, some cases require L-error estimation and, therefore, narrow applicability. In this paper, we extend one of the approaches and combine it with a priori error bounds for Laplacian eigenvalues to obtain a unified method that has wide application. We describe how to evaluate some constants required to verify the positivity of desired solutions. We apply our method to several problems, including those to which the previous method is not applicable.

本文言語English
論文番号9
ジャーナルPartial Differential Equations and Applications
3
1
DOI
出版ステータスPublished - 2022 2月

ASJC Scopus subject areas

  • 分析
  • 応用数学
  • 計算数学
  • 数値解析

フィンガープリント

「A posteriori verification of the positivity of solutions to elliptic boundary value problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル